Venerdì 28 Ottobre 2022

Ore 09.45 - 13.00

Aula Magna Carassa-Dadda

Edificio BL28 | Politecnico di Milano

Campus Bovisa | Via Lambruschini, 4 | MILANO

Energy Tracks: ACCUMULO ENERGETICO

quale ruolo nel sistema elettrico del futuro?

Luigi Mazzocchi

La transizione energetica (1/2)

Transizione energetica:

- necessaria per contrastare i cambiamenti climatici
- è anche uno degli strumenti per garantire la sicurezza energetica

Nelle strategie energetiche più recenti (Fit for 55, RepowerEU):

- generazione da FER (+70 GW FER al 2030 → 14 MLD m³/anno gas)
- accumulo elettrico (nel PNIEC grande accumulo 6 GW, circa 3 GW/18 GWh di grandi batterie, 4 GW di batterie distribuite. Nello scenario TERNA-SNAM, 95 GWh di nuovi accumuli)
- mobilità elettrica (6 milioni BEV al 2030 → 5 MTEP/anno)
- Idrogeno, P2X

Le fonti primarie sono rinnovabili, a bassissime emissioni sul ciclo di vita, per definizione disponibili in modo abbondante e sicuro (e, tramite l'accumulo e il P2X, continuo)

In quanto fonti, quindi:

- Danno un forte contributo alla de-carbonizzazzione
- Non sono soggette a rischi geopolitici
- Alleggeriscono (in prospettiva eliminano) la dipendenza dai combustibili importati ma...

La transizione energetica (2/2)

Lo sfruttamento delle FER necessita di materie prime e tecnologie, senza le quali si l'accessita di materie prime e tecnologie prime

<u>Tecnologie</u>: Italia ed Europa non sono in posizione di forza

<u>Fotovoltaico</u>: nel 2021, Cina + Sud Est asiatico producono il 97 % delle celle e il 90% dei moduli

Batterie al litio: la sola Cina copre oltre il 75 % della capacità produttiva globale.

R&D e innovazione tecnologica, e investimenti pubblici e privati possono rilanciare la produzione europea (ad es. la "European Battery Alliance" che sta portando a realizzare alcune Gigafactory di batterie a ioni litio)

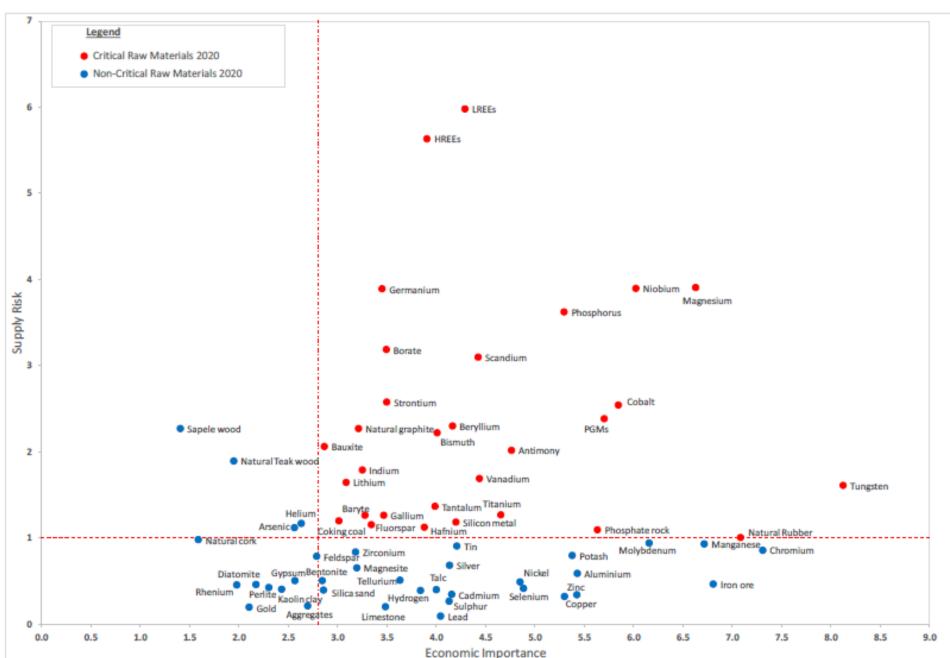
Materie prime: è anche e soprattutto questo il fattore di rischio per i Paesi Europei:

- Rischi di fornitura insufficiente e prezzi volatili
- Perdita di opportunità di sviluppo industriale

Cosa sono i Critical Raw Materials

Si fa riferimento alle Linee Guida della Commissione Europea (2017)

Due parametri:


- Economic Importance (EI): somma delle frazioni di utilizzo di un materiale nei vari settori produttivi europei, pesata sul valore aggiunto di ciascun settore
- Supply Risk (SR): esprime il rischio di interruzione di fornitura alla UE di un certo materiale. Si basa:
 - sul grado di concentrazione della fornitura del materiale fra i vari Paesi, e delle caratteristiche dei Paesi stessi (forma di governo e aspetti commerciali).
 - Sul grado di dipendenza della UE dall'importazione del materiale

SR è valutato sul «collo di bottiglia» del materiale, che può essere la fase di estrazione o di lavorazione.

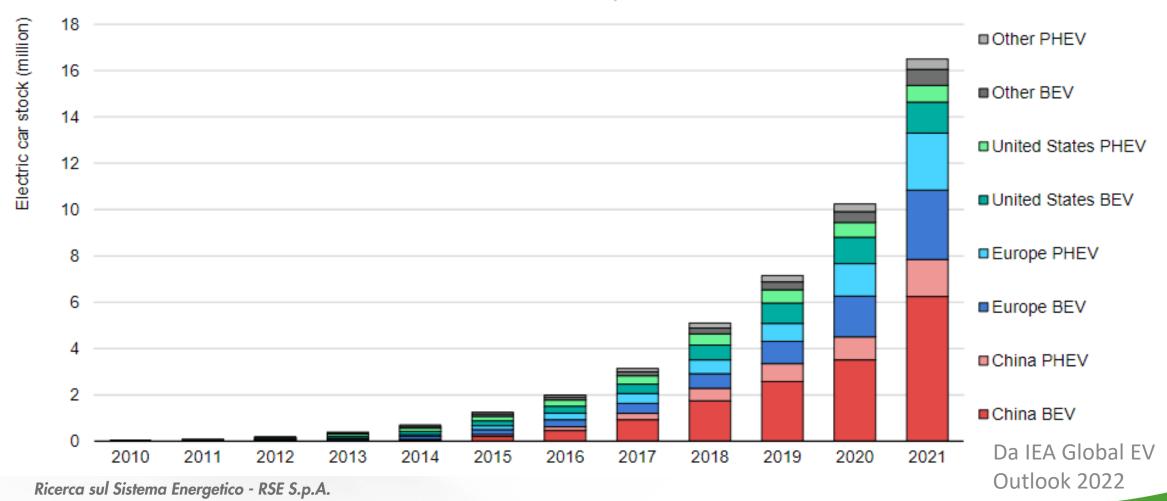
Un materiale è considerato critico se:

(EI>2.8) AND (SR>1)

Quali sono i Critical Raw Materials per la UE (1/2)

Study on the EU's list of Critical Raw Materials, EC, 2020

Quali sono i Critical Raw Materials per la UE (2/2)


2020 Critical Raw Materials (30)			
Antimony	Fluorspar	Magnesium	Silicon Metal
Baryte	Gallium	Natural Graphite	Tantalum
Bauxite	Germanium	Natural Rubber	Titanium
Beryllium	Hafnium	Niobium	Vanadium
Bismuth	HREEs	PGMs	Tungsten
Borates	Indium	Phosphate rock	Strontium
Cobalt	Lithium	Phosphorus	
Coking Coal	LREEs	Scandium	

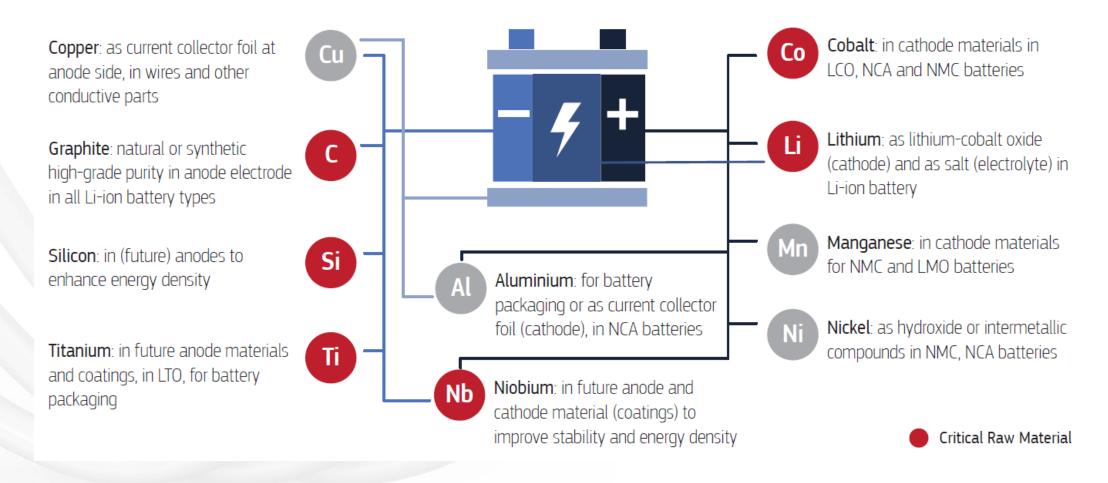
Il caso delle batterie al litio (1/4)


Domanda di batterie in forte crescita, trainata dai veicoli elettrici

Global electric car stock, 2010-2021

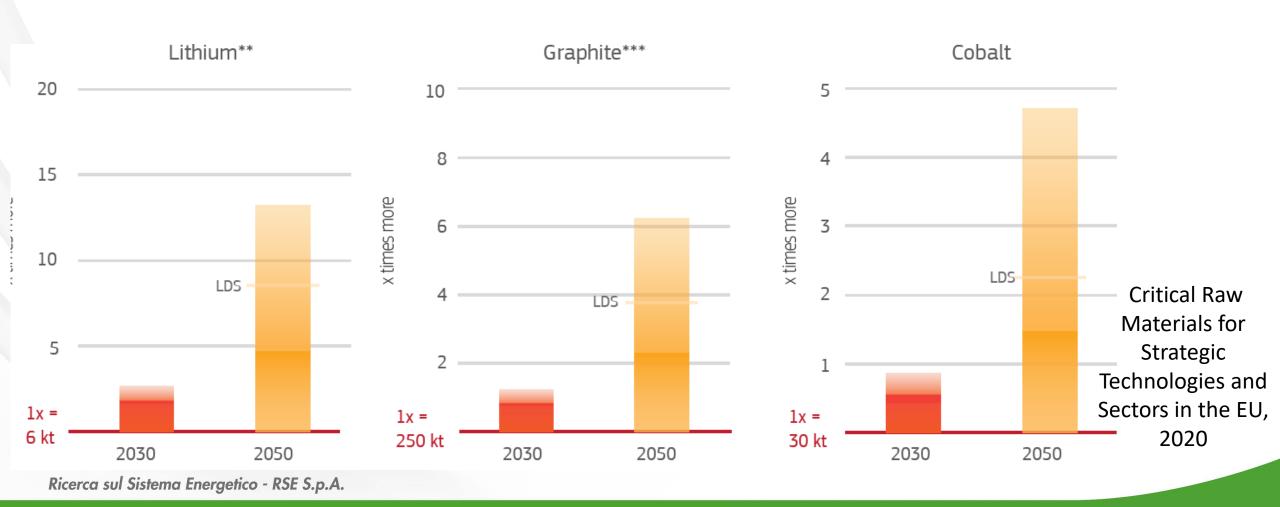
Il caso delle batterie al litio (2/4)

Nello scenario IEA «Sviluppo sostenibile» la produzione di batterie cresce di un ordine di grandezza nei prossimi 10 anni (circa 160 GWh/anno nel 2021, circa 3000 nel 2030)



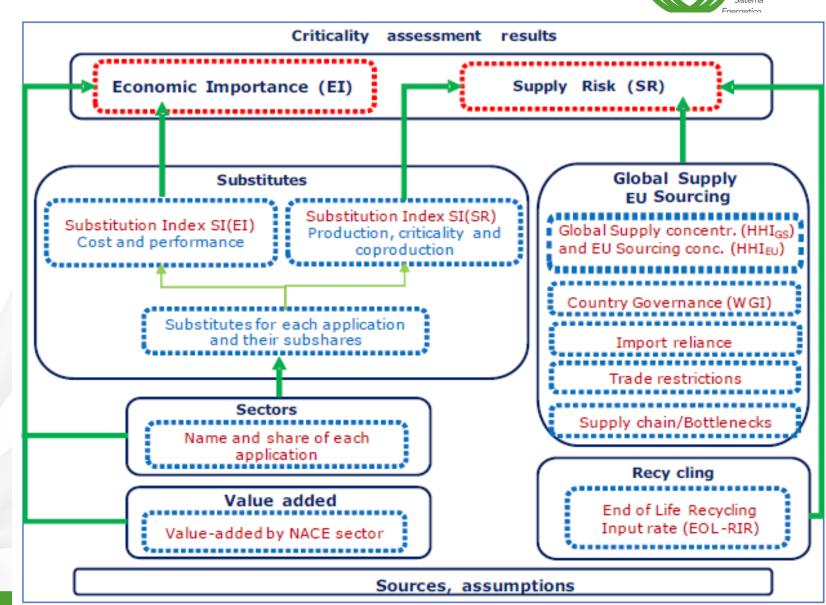
Da IEA «The role of Critical Materials...»

Il caso delle batterie al litio (3/4)



Tecnologia dominante oggi e nel medio termine: ioni litio. Utilizza alcuni CRM, diversi in funzione della composizione del catodo

Il caso delle batterie al litio (4/4)


Per i tre principali materiali critici, l'incremento di consumi per la transizione energetica, rapportato a tutti i consumi attuali, va dal 60 al 200 % al 2030 e arriva ad un fattore 5÷10 al 2050

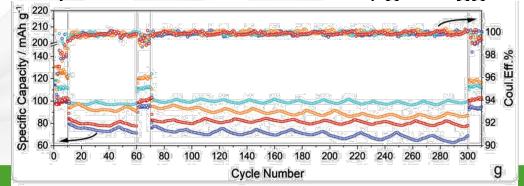
Quali azioni per mitigare i rischi?

- Innovazione tecnologica (scelta di materiali meno critici)
- Riciclo (anche benefici ambientali)
- Nuove fonti di approvvigionamento, interne o esterne

La ricerca RSE: le batterie al Sodio

Tecnologia innovativa, alternativa alle batterie al litio

Vantaggi:


 non si usa il litio (CRM) ma il sodio (non-CRM, molto abbondante e ben distribuito)

Characteristic	Lithium	Sodium
Crustal abundance (ppm)	20	23600
Distribution (reserves)	70% South America	Everywhere
Anode current collector	Cu	Al
lonic radius (Å)	0.69	0.98
Molar mass (g mol-1)	6.94	22.99

- non si usa la grafite (CRM) all'anodo, sostituita da altri composti a base di carbonio,
 come i MXeni o le MAXphase (carburi misti di Al, Sn, non CRM, + Ti, borderline)
- Non si usa Cobalto (CRM)

Prestazioni:

- Densità di energia: paragonabile alle batterie al litio
- Densità di potenza elevata (ricarica anche in 12 minuti)
- Ciclabilità e vita utile: esperienza ancora limitata, già raggiunti 600 cicli

La ricerca RSE: la «second life» delle batterie

Un'opzione allo studio è il riutilizzo di batterie per EV a fine vita per realizzare sistemi di

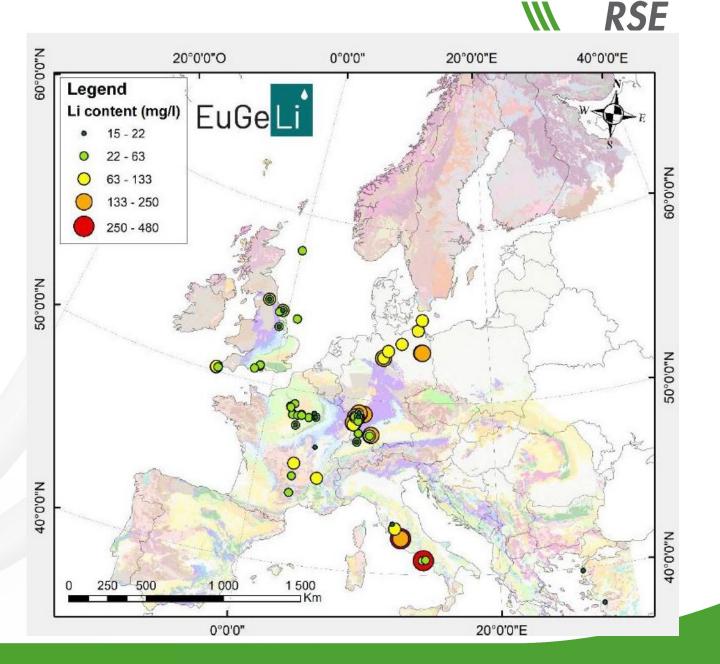
accumulo per gestione energia rinnovabile.

Esistono già prototipi di dimensione significativa, anche 3 MW

Benefici:

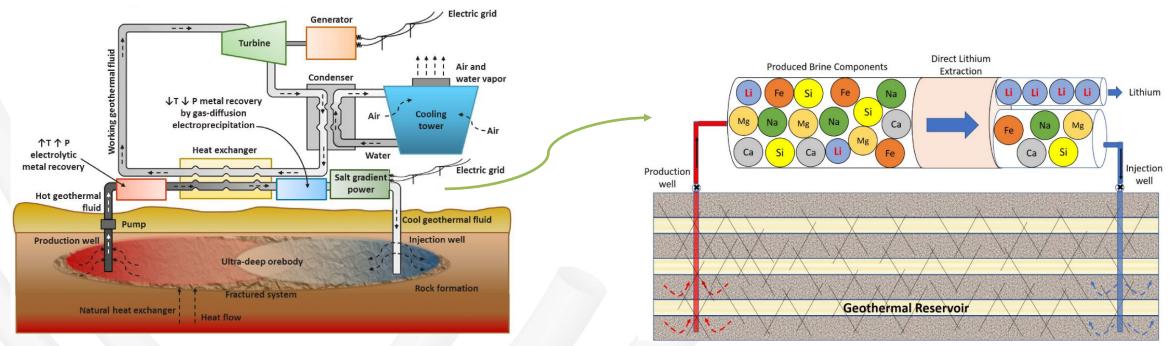
- riduzione del costo complessivo (smaltimento batterie EV + realizzazione SdA)
- minore utilizzo di materie prime
- minori quantità di scarti da smaltire

Criticità:


- prova e selezione delle batterie a fine vita
- stima della vita utile del prodotto di seconda vita

Obiettivi della ricerca RSE: metodi di prova, modelli di stima della vita utile (diagnostica con intelligenza artificiale), Battery Management System innovativo per gestire celle poco omogenee

La ricerca di RSE: potenziale minerario di fluidi geotermici (1/2)


A valle dello sfruttamento energetico, i fluidi geotermici hanno composizione ricca di vari elementi, fra cui il litio. Potenzialmente, una risorsa locale da valorizzare

Da: EuGeLi project

La ricerca di RSE: potenziale minerario di fluidi geotermici (2/2)

Obiettivi:

- Identificare il chimismo dei fluidi geotermici e risalire e mappare possibili contesti geologici che ne hanno determinato l'arricchimento in metalli;
- Identificare un processo/tecnica di estrazione di Litio e altri minerali strategici dalle brine.

Grazie per l'attenzione

luigi.mazzocchi@rse-web.it